

# "Water, water everywhere and not a drop to Drink"

Coleridge, Rhyme of the Ancient Mariner

- Motivation
- AIRS RH product, mean RH
- Simulating H<sub>2</sub>O in NCAR CAM3
- Observed Supersaturation
- Observed and simulated Climate Feedbacks

## H<sub>2</sub>O dominates Longwave



Brindley & Harries 1998 (SPARC 2000)

#### **Long Term UTH trends**

HIRS/TOVS trends



Bates & Jackson 2001, GRL

#### AIRS Humidity Jan 6, 2005

Specific [H<sub>2</sub>O]

Relative





RH created from L2 retrievals (each profile): RH(x,y,z)=H<sub>2</sub>O(x,y,z) /  $\int q_s(T(x,y,z_0),T(x,y,z_1)) dz$ 

#### Seasonal Zonal Mean (AIRS)



#### **Seasonal Mean 250mb RH**



#### Mid-Lat Variations: one point



#### Vertical Structure: Tropical Variability



# **Tropical Variations: one point**



#### **Tropical UT/LS variations**



# **Subtropical Variations: New Delhi**



### H<sub>2</sub>O in Climate models

#### General Circulation Models (GCMs):

- Conserve mass and energy, RH < 100%</li>
- Bulk condensation processes
  - Convection, Stratiform, Advection
- Subgrid 'parameterizations'
  - Cloud fractions
  - Distributions of clouds, liquid
  - Bin or Moment microphysics
  - Nucleation of particles, aerosol interactions

#### Model v. Observations

- Mean H<sub>2</sub>O seasonal
- Standard Deviations
- Impacts on Radiation Balance/Heating
- Seasonal Cycle
  - 'Tape recorder'
  - Isentropic transport
- Interannual variations: ENSO
- Trends: long term, recent change

#### **Seasonal Comparison: 250mb**



#### AIRS v. CAM3: Profiles



#### **Zonal Mean CAM RH & Diff**



#### Impact on Radiative Fluxes

A) Jan OLR CAM RH (cld) - AIRS RH



B) Jul OLR CAM RH (cld) - AIRS RH







# **Applications: Supersaturation**

- Ice doesn't condense at 100% RHi
- Why?
  - RHi ≠ RHw (diff vapor pressures)
  - Ice doesn't form on its own: usually due to homogeneous/heterogeneous freezing
- Observations show potentially large RHi
  - Important for cloud formation, indirect effects of particles on radiative balance, stratospheric water vapor

#### **Supersaturation: Tropics**

Supersaturation (RH > 100%) seen in AIRS data

Validation against in situ data indicates some is 'real' (some is spurious)



# **Supersaturation Frequency**



### Applications: Climate 'Feedbacks'

- How does the atmosphere respond to forcings?
  - UTH positive feedbacks
  - Lapse Rate, negative feedbacks (θe)
- Observations as an analogue for climate change
  - Relationships between Ts, OLR, Radiation
  - Note: AIRS OLR not good, need to use CERES
  - Temporal and spatial scaling? Test daily-> annual
- Compare Model and Observations

What's new: coverage, vertical resolution

WARNING: Work in progress

# T<sub>s</sub> v. OLR, RH (annual)



For  $T_s > \sim 297$ K, get rapid increase in upper level RH & decrease in OLR (convection/clouds)

# Ts v. OLR, RH (monthly)

**Observations** 

Model

**OLR** 

RH

H<sub>2</sub>O (specific humidity)



#### **OLR v. RH (annual)**



More clouds = More water (RH)

#### Convection (OLR) v. RH

Observations

Model

Relative Humidity

Specific Humidity (H<sub>2</sub>O)



More clouds (lower OLR) = More water (RH)

#### Lapse Rates (v. OLR, Ts)

**Observations** 

Model

UT (200mb)

LT (500mb)



Lapse rate (dT/dz) follows moist adiabat:
Warmer moist adiabat has larger dT/dz at upper levels,
But smaller dT/dz at lower levels (negative feedback)

#### **ΔSST v. ΔUTH (monthly)**

Observed UTH increases with SST, but less than RH=const



Consistent with: Minschwaner & Dessler, JOC 2004 (UARS/MLS, 215mb H2O)

#### **Greenhouse Parameter (GHP)**

Atmospheric Trapping  $G_a = \sigma T_s^4$  - OLR Observations Model



Differences in SST (model/obs), but slopes are similar. Slope (Wm<sup>-2</sup>K<sup>-1</sup>) a gross measure of greenhouse effect

# GHP Monthly: Each point

Normalized for Ts:  $G = (\sigma T_s^4 - OLR)/ \sigma T_s^4$ 

**Observations** Model AIRS Ts v. CirSky G -20 to 20 0.6 Param Sky Greenhouse Param Sky Greenhouse GHP v. Ts LandDcean 280 340 280 300 320 300 320 340 Ts (K) Ts (K) 200mbAIRS RH v. CIrSky G -20 to 20 192mbCAM RH v. CirSky G -20 to 20 Sky Greenhouse Param Greenhouse Paran GHP v. RH 0 20 80 100 20 40 60 80 100 RH (%)

GHP also increases with H2O (specific humidity)

# Summary (1)

#### • AIRS UTH:

- Good vertical structure (RH 'bimodal' in vertical)
- New insights into variability, from daily->annual

#### • GCM/CAM:

- Reproduces climatology, some biases
- Too moist in subtropics (some radiative impacts)
- Variability not well reproduced

# Summary (2)

- Supersaturation is important in UT
  - Common in UT
  - Looking for anthropogenic effects on clouds
- AIRS can provide insight on climate forcings
  - Greenhouse effect appears to increase with SST
  - Water vapor feedback positive: but not as positive as constant RH would assume
  - Climate model appears to reproduce these relationships on a monthly basis (RH more constant than observed)